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Abstract. There are many use cases in business process management
that require the comparison of behavioral models. For instance, verifying
equivalence is the basis for assessing whether a technical workflow correctly
implements a business process, or whether a process realization conforms
to a reference process. This paper proposes an equivalence relation for
models that describe behaviors based on the concurrency semantics of
net theory and for which an alignment relation has been defined. This
equivalence, called isotactics, preserves the level of concurrency of aligned
operations. Furthermore, we elaborate on the conditions under which an
alignment relation can be classified as an abstraction. Finally, we show
that alignment relations induced by structural refinements of behavioral
models are indeed behavioral abstractions.

1 Introduction

Behavioral models can serve different purposes: communicating ideas, simulating
systems, or defining precise execution instructions. Tailoring a model for a certain
purpose leads to the existence of several “related” models of the same original.
Each model shall be appropriate for its purpose. In business process management
(BPM), behavioral models on the business level should, thus, concentrate on
aspects that are important from a business perspective, while technical imple-
mentation aspects are disregarded. Technical models, in turn, need to describe
activities required for implementation, such as data mapping or error handling.

Given a set of related models, it is often feasible to map semantically related, or
aligned, (groups of) modeling constructs across models. Fig. 1 shows two aligned
behavioral models captured using BPMN [1] language. Both models describe
behaviors of performing “product at the market” research. Related groups of
tasks are enclosed in the areas denoted by dotted borders and connected by
dashed lines, e.g., task “Study product” in Fig. 1(a) is aligned with tasks “Select
product” and “Collect product info” in Fig. 1(b) by the semantical concept α.

There are many use cases in BPM that require the comparison of aligned
behavioral models. Verifying equivalence, for instance, is the basis for assessing
whether a technical workflow correctly implements a business process, or whether
a process realization conforms to a reference process [2]. Further, abstraction of

⋆ This work was initiated while the first author was with Hasso Plattner Institute.
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Fig. 1. Alignment of BPMN diagrams

behavioral models, i.e., an alignment that implies information loss from one model
to another, plays an important role in managing model complexity [3]. Despite
these observations, as of today, there is a lack of formal grounding for verifying
behavior equivalence without imposing any assumption on the structure of an
alignment relation. Note that in general groups of aligned modeling constructs
may be of arbitrary size and can even overlap.

In this paper, we study models that describe behavior as a partially ordered,
usually infinite, set (poset) of events. Here, an event is a phenomenon located at a
single point in time [4]. For these models, we answer the question of how to define
an equivalence relation that preserves order and concurrency of event occurrences
without imposing any assumptions on the structure of the alignment. To answer
this question, we introduce the notion of isotactics, which allows for comparing
aligned behavioral models, very much like bisimulation [5,6] allows the comparison
of non-aligned models. Formally, isotactics is implemented using the concept
of a tactic, i.e., a poset of groups of events labeled with the same semantical
concepts of the alignment relation. As such, our contribution is a first step toward
a spectrum of equivalences for aligned behavioral models. Moreover, we show
that common structural abstraction techniques for behavioral models [7,8] indeed
preserve our new equivalence notion; however, we also show that isotactics makes
the limitations of such structural approaches explicit. Note that the alignment
construction, i.e., the discovery of semantically related constructs, is taken for
granted; it can either be performed manually or automatically [9,10].

We proceed as follows: The next section presents preliminary notions. Section 3
is devoted to the discussion of alignment of behavioral models, which leads to
the definition of isotactics. Then, Section 4 studies how this notion can aid
in explaining the abstraction relation between behavioral models. Section 5
elaborates on the application of proposed notions. Finally, we draw conclusions.

2 Preliminaries

First, Section 2.1 discusses Petri nets – a formalism to which many languages for
modeling behavior can be traced back [11]. Section 2.2 talks about causal nets –
a way of representing concurrent runs of net systems.
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2.1 Petri Nets

Petri nets are a well-known formalism for modeling behaviors.

Definition 1 (Petri net). A Petri net, or a net,N = (P,T,F ) has finite disjoint
sets P of places and T of transitions, and the flow relation F ⊆ (P ×T )∪ (T ×P ).

For a node x ∈ P ∪ T , ●x = {y ∣ (y, x) ∈ F} is the preset, and x● = {y ∣ (x, y) ∈ F}
is the postset of x. Min(N) is the set of places of N with empty preset, i.e.,
{p ∈ P ∣ ● p = ∅}. A node x ∈ P ∪ T is an input (output) of a node y ∈ P ∪ T , iff
x ∈ ●y (x ∈ y●). For X ⊆ P ∪T , let ●X = ⋃x∈X ●x and X● = ⋃x∈X x●. For a binary
relation R, we denote by R+ (R∗) the transitive (and reflexive) closure of R.

In the graphical notation, places are represented by circles, transitions by
rectangles, and flow relation by directed edges (see Fig. 2). Execution semantics
of Petri nets is based on states and state transitions and best perceived as a
“token game”. The state of a net is represented by a marking, which describes a
distribution of tokens on the net’s places. Whether a transition is enabled at a
marking depends on the tokens in its input places. An enabled transition can
occur, which leads to a new marking of the net.

To formalize semantics, we identify the flow relation F with its characteristic
function on the set (P × T ) ∪ (T × P ).

Definition 2 (Net semantics). Let N = (P,T,F ) be a net.
○ M ∶ P → N0 is a marking, or a state, of N assigning each place p ∈ P a number
M(p) of tokens in p; N0 denotes the set of all natural numbers including
zero. With [p], we denote the marking in which place p contains just one
token and all other places contain no tokens. We identify M with the multiset
containing M(p) copies of p for every p ∈ P .
○ For a transition t ∈ T and a marking M of N , t is enabled at M , written
M[t⟩, iff ∀p ∈ ●t ∶M(p) ≥ 1.
○ If t ∈ T is enabled at M , then t can occur, which leads to a new marking M ′

and the step M[t⟩M ′ of N with M ′(p) =M(p) − F (p, t) + F (t, p), p ∈ P .
○ A net system, or a system, is a pair S = (N,M0), where M0 is a marking of
N . M0 is called the initial marking of N .
○ A sequence of transitions σ = t1 . . . tn, n ∈ N0, ti ∈ T , i ∈ 1 . . . n, of net system
S = (N,M0) is a firing sequence in S iff there exists a sequence of steps
(N,M0)[t1⟩(N,M1) . . . (N,Mn−1)[tn⟩(N,Mn) which leads from marking M0

to marking Mn via a (possibly empty) sequence of intermediate markings
M1 . . .Mn−1.
○ For any two markings M and M ′ of N , M ′ is reachable from M , denoted by
M ′ ∈ [N,M⟩ iff there exists a run of N , i.e., there exists a firing sequence σ

leading from M to M ′.

In the following, we shall refer to the natural marking of a net N ; the natural
marking puts one token at every place from the set Min(N) and no tokens
elsewhere. In the graphical notation, it is accepted that tokens are drawn as black
dots inside places. Fig. 2 shows two net systems (in natural initial markings);
the systems correspond to the BPMN diagrams in Fig. 1. Transitions which
correspond to tasks in BPMN diagrams are drawn as rectangles with labels inside;
the labels are the short-names of tasks which appear next to each task in Fig. 1.
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Fig. 2. Net systems that correspond to the BPMN diagrams in Fig. 1

2.2 Causal Nets and Processes

In this section, we present causal nets [4,12] and discuss how they can be used to
capture processes, or concurrent runs, of net systems. Causal nets provide the
foundation for general net theory [13].

Definition 3 (Causal net). A net N = (B,E,G) is a causal net, iff :
○ for each b ∈ B holds ∣ ● b∣ ≤ 1 and ∣b ● ∣ ≤ 1, and
○ N is acyclic, i.e., G+ is irreflexive.

Elements of E are called events and elements of B are called conditions. The
events of causal nets are usually used to describe occurrences of “atomic events”,
e.g., occurrences of transitions of a net system. An occurrence of an event e is
associated with a state in which all its preconditions (●e) hold, and the effect of
its occurrence is that all its preconditions cease to hold, and all its postconditions
(e●) begin to hold [4]. Given a causal net N = (B,E,G), the concurrency relation
of N is defined by ∣∣N = ((B∪E)×(B∪E))∖(G

+∪(G+)−1) (we omit the subscript
if the context is clear). Note that ∣∣N is symmetric and reflexive. Moreover, every
two nodes of a causal net are either in the concurrency or in the (inverse) causal
relation, where nodes x and y are causal if and only if xG+y. The causal relation
specifies a dependency between events of a causal net, such that if e1G

+e2, where
e1, e2 ∈ E, then in the net system composed of the causal net and its natural
initial marking, e2 cannot occur without e1 having priorly occurred.

A process of a net system is a causal net together with a mapping which allows
interpreting the net as a concurrent run of the net system4. Prior to proceeding
with defining the notion of a process, we present the notion of a cut. A cut of a
causal net is the maximal co-set with respect to set inclusion, where a co-set is a
set of pairwise concurrent conditions. A process is then defined as follows.

Definition 4 (Process). A process π = (Nπ, ρ) of a net system S = (N,M0),
N = (P,T,F ), has a causal net Nπ = (B,E,G) and a function ρ ∶ B ∪E → P ∪ T :

4 Not to be confused with a business process or a process model.
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Fig. 3. Processes of the net system in Fig. 2(b)

○ ρ(B) ⊆ P, ρ(E) ⊆ T (ρ preserves the nature of nodes),
○ Min(Nπ) is a cut, which corresponds to the initial marking M0, that is
∀ p ∈ P ∶M0(p) = ∣ρ

−1(p) ∩Min(Nπ)∣ (π starts at M0), and
○ ∀ e ∈ E ∀ p ∈ P ∶ (F (p, ρ(e)) = ∣ρ−1(p) ∩ ●e∣) ∧ (F (ρ(e), p) = ∣ρ−1(p) ∩ e ● ∣)
(ρ respects the environment of transitions).

We refer to S as the originative system of π. A process π of S is initial, iff E = ∅.

Given a run of a net system, one can construct a unique process induced by
the run (observe that the inverse does not hold). The starting point of the
construction is a causal net composed of conditions that correspond to places
from the initial marking of the net system and no events. The construction
proceeds by stepwise appending events to the causal net. Each appended event
corresponds to a transition in the run. Events are appended in the order in
which corresponding transitions appear in the run. Each fresh event e which
gets appended to the causal net and has corresponding transition t is appended
together with output conditions, which must correspond to output places of t.
Note that input conditions of e, which must correspond to input places of t, must
be chosen from the conditions of the causal net with empty postsets.

Every process of a net system describes a family of runs together with
information on concurrent nodes that participate in the runs. Processes of a net
system can be in a prefix relation. Process π′ is an extension of process π if
during construction of π′, induced by some run of the system, it is possible to
observe π. Consequently, process π is a prefix of π′.

Definition 5 (Prefix of a process). Let π = (Nπ, ρ), Nπ = (B,E,G), be a
process of a net system. Let c be a cut of Nπ and let c↓ denote the set of nodes
{x ∈ B ∪ E ∣ ∃ y ∈ c ∶ (x, y) ∈ G∗}. A process πc is a prefix of π up to (and
including) c, iff πc = ((B ∩ c

↓,E ∩ c↓,G ∩ (c↓ × c↓)), ρ∣c↓).

Fig. 3 shows two processes of the net system in Fig. 2(b), the process in Fig. 3(a)
being a prefix of the one in Fig. 3(b). Here, event ex corresponds to transition
tx of the originative system, i.e., ρ(ex) = tx (for each event ex), and condition
cy corresponds to place py of the originative system, i.e., ρ(cy) = py (for each
condition cy). Conditions c

′
3
and c′

6
in Fig. 3(b) correspond to places p3 and p6

of the originative system, and represent second occurrences of respective places
in the process. Both systems in Fig. 3 induce infinitely many processes.

3 Alignment

Alignment can be seen as the generic setting in which two models can be compared.
We first reflect on the alignment of conceptual models in general in Section 3.1.
Then, Section 3.2 turns the focus to net systems. Section 3.3 proposes the notion
of isotactics to decide whether two aligned net systems show equivalent behaviors.
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3.1 Alignment of Conceptual Models

The alignment of conceptual models has its roots in the field of data integra-
tion [14,15]. Despite terminological differences even in this field, cf., [16], a common
interpretation defines an alignment as an association between semantically related
entities of different models, e.g., between attributes of data schemas.

Following [15], an alignment consists of a set of correspondences between two
models. Each correspondence relates two sets of entities of both models to each
other. If both those sets are singletons, we speak of an elementary correspondence.
Otherwise, the correspondence is called 1:n or n:m complex. The identification of
correspondences, i.e., the construction of an alignment, is called matching.

A correspondence associates entities with each other, but does not define the
semantics of this relation. Semantics is defined by extending an alignment toward
a mapping comprising mapping expressions. Those are directed and define how
the instances of entities of one model are transformed into instances of entities of
another model. Consider a 2:1 complex correspondence between integer attributes
of data schemas. A mapping expression may define the sum of two values from
one schema as equivalent to a single value in the other schema.

Alignments and mappings of conceptual models may be checked for validity
using a variety of properties. In the field of data integration, for instance, sat-
isfiability and losslessness have been investigated [17]. The former holds for a
mapping between two schemas if there is a pair of instances of either schema,
i.e., a pair of data value tuples, that satisfies the constraints of the mapping.
Losslessness relates to the result set that may be queried. If a mapping is lossless,
all instances returned by a query on one schema have a counterpart in the other
schema that is derived by the mapping.

3.2 Alignment of Behavioral Models

The notion of an alignment discussed for conceptual models in general can directly
be applied to behavioral models, e.g., Petri net systems. Correspondences are
then defined between sets of semantically related activities, i.e., transitions of
different net systems. Formally, we capture such an alignment as follows.

Definition 6 (Alignment of net systems).
Let S1 = (N1,M1), N1 = (P1, T1, F1), and S2 = (N2,M2), N2 = (P2, T2, F2), be
net systems. A set ⋈ ⊆ P≥1(T1) ×P≥1(T2) is called an alignment of S1 and S2.

5

Given an alignment ⋈, we denote by dom⋈ and cod⋈ the domain and codomain
of ⋈, respectively. Recently, approaches for identifying correspondences between
behavioral models have been presented [9,10]. Even though fully automatic
identification of correspondences is hard to achieve, these works provide support
for constructing an alignment in a semi-automated manner.

Again, correspondences between behavioral models capture only the related-
ness, not the exact semantics in the sense of a mapping. That is, corresponding
activities may not relate to the same real-world activities. For the models in
Fig. 1, for instance, “Study product” may involve more than “Select product”
and “Collect product info”. Nevertheless, the activities are semantically related

5 P≥1(S) denotes the set of all non-empty subsets of a set S, including S itself.
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Fig. 4. (a) A process of the net system in Fig. 2(a), (b) the set abstraction of
the process in (a), and (c) the set abstraction of the process in Fig. 3(b)

and are considered to be equivalent for any analysis of the alignment. For a
complex correspondence, sets of activities are considered to be equivalent. As
such, analysis of an alignment is founded on these sets instead of single activities.

Before, we discussed properties of alignments in the field of data integration,
i.e., satisfiability and losslessness. These properties may be translated into the
domain of behavioral models. Satisfiability then requires the existence of a single
process that is possible in two net systems after the corresponding transitions
have been resolved. Apparently, this is a rather weak requirement. Drawing the
analogy to behavioral models for losslessness yields a stricter criterion. It requires
that the characteristics of all processes of one net system are preserved in the
processes of the other net system once the correspondences have been resolved.

3.3 Isotactics of Aligned Behavioral Models

To decide if two net systems show equivalent behaviors under a given alignment,
we rely on a comparison of their processes. Therefore, we first need to clarify how
a single process is interpreted once we consider not only single events, but groups
thereof as being semantically related. Given a process of a net system and subsets
of its transitions, a set abstraction of the process captures its interpretation by
relating to all events that represent occurrences of transitions from the subsets.

Definition 7 (Process set abstraction).
Let S = (N,M0), N = (P,T,F ), be a net system, π = (Nπ, ρ), Nπ = (B,E,G), be
a process of S, and κ ⊆ P≥1(T ). The set abstraction of π with respect to κ, denoted
by ακ(π) = (H,≺, ξ), is defined by the set of events H = {e ∈ E ∣ ∃ k ∈ κ ∶ ρ(e) ∈ k},
the relation ≺, which is the restriction of the causal relation of Nπ to H , and the
function ξ ∶H → P≥1(κ) such that ξ(e) = {k ∈ κ ∣ ρ(e) ∈ k}, e ∈H.

Fig. 4(b) and Fig. 4(c) show set abstractions of the processes in Fig. 4(a) and
Fig. 3(b), respectively. In both abstractions, we use the sets of transitions induced
by the alignment depicted in Fig. 1 as κ. In the figures, boxes represent events
whose corresponding transitions belong to at least one set in κ, i.e., they are
visible with respect to κ; note that other events are considered to be silent for
the purpose of alignment. Edges encode causal relations between events, e.g.,
e2 ≺ e5 and e3 ≺ e5 in Fig. 4(b). Finally, every event e ∈ H gets labeled with a
subset of κ; the subset is composed of elements of κ which contain the transition
that corresponds to e, e.g., event e5 in Fig. 4(b) corresponds to transition t5
in Fig. 2(a), which is induced by task “Perform initial analysis” in Fig. 1 that
participates in β and γ correspondences of the alignment. Essentially, a process
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set abstraction is an elementary event structure [4] composed of events that are
visible as much as the alignment is concerned. In [4], the authors accept the
equality of elementary event structures as an appropriate equivalence notion
for causal nets; the claim is supported by proposing translations between both
notations. We agree with this line of argument and accept two processes as
equivalent if and only if their set abstractions are isomorphic, i.e., if and only if
one can define a causality-preserving bijection between events.

As a next step, we relate process set abstractions to an alignment between
net systems, that is, we decide whether an alignment between set abstractions
of two processes of the net systems can be deduced from the given alignment
between their transitions. This is the case if events in both set abstractions can
be partitioned such that one can define a bijection relation between the partitions
for which any two events taken from one abstraction and different parts of the
partition, and any two events taken from the related parts of the partition of the
other abstraction, are causally related in a similar way6.

We refer to the partitions of events in set abstractions (see the discussion
above) as process tactics. Let (Hi,≺i, ξi) be a process set abstraction and let
h1 ⊆Hi and h2 ⊆Hi be non-empty disjoint sets of events, then h1 and h2 are in
causal relation, written h1 ≺i h2, iff for every pair (e1, e2) ∈ h1 ×h2 holds e1 ≺i e2;
note that in the following we shall omit subscript i where the context is clear.

Definition 8 (Process tactic). Let α = (H,≺, ξ) be the set abstraction of
process π w.r.t. κ. A partition H of H is a tactic of α w.r.t κ iff :
○ for every part h ∈H there exists k ∈ κ such that for every event e ∈ h holds
k ∈ ξ(e), i.e., ∀ h ∈H ∃ k ∈ κ ∀ e ∈ h ∶ k ∈ ξ(e) (H respects κ), and
○ for every two parts h1, h2 ∈ H, h1 ≠ h2, holds either h1 ≺ h2, or h2 ≺ h1, or
for each (e1, e2) ∈ h1 × h2 holds (e1, e2), (e2, e1) ∉ ≺ (H respects causality).

Every part of a tactic describes a complex event which stands for an occurrence
of at least one and usually several semantically (by alignment) related transitions
of the net system. A tactic, therefore, can be seen as a poset of complex events.
Every set abstraction of a process has a trivial tactic, i.e., a tactic in which each
of its parts is a singleton. Usually, a process set abstraction can be characterized
by several tactics. Finally, aligned process set abstractions are defined as follows.

Definition 9 (Aligned process set abstractions).
Let π1 and π2 be processes of net systems S1 and S2, respectively. Let ⋈ be an
alignment of S1 and S2. Process set abstractions αdom⋈(π1) = (H1,≺1, ξ1) and
αcod⋈(π2) = (H2,≺2, ξ2) are aligned with respect to ⋈, denoted by αdom⋈(π1) ⋈
αcod⋈(π2), iff there exist tactics H1 and H2 of π1 and π2, respectively, and a
bijection χ ∶ H1 → H2 such that: (i) for every χ(h1) = h2, h1 ∈ H1, there exists
(x, y) ∈ ⋈ such that ∀e ∈ h1 ∶ x ∈ ξ1(e) and ∀e ∈ h2 ∶ y ∈ ξ2(e) (χ respects
alignment), and (ii) ∀u, v ∈H1 ∶ u ≺1 v⇔ χ(u) ≺2 χ(v) (χ respects causality).

We refer to χ as the alignment between tactics of process set abstractions. We say
that processes are aligned if their abstractions are aligned. Apparently, the two
set abstractions in Fig. 4(b) and Fig. 4(c) are not equivalent in the sense of [4],

6 A partition of a set is a collection of disjoint subsets of the set whose union is the set.
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Fig. 5. Aligned process set abstractions

i.e., there exists no causality-preserving bijection between event sets. Nevertheless,
one can rely on tactics to compare these set abstractions. Fig. 5 shows aligned
process set abstractions from Fig. 4(b) and Fig. 4(c). In the figure, areas denoted
by dotted borders with grey backgrounds define tactics (those which participate
in the alignment). The dashed lines depict a bijection relation between the tactics
and are labeled with semantical correspondences of the alignment from Fig. 1.
Observe that the part {e5, e7} of the tactic on the left can also be related to
the part {e8} of the tactic on the right by using correspondence β; however, the
existence of a correspondence is sufficient to decide for alignment.

Having defined the alignment of processes, we are able to define when the
behavior of one net system can be mirrored by another net system under a given
alignment. A system covers the tactic of another system if every process of the
former system has a corresponding process in the latter system which mimics
the behavior once abstractions have been applied. Formally, we capture this by
a set that comprises pairs of aligned processes from both systems and require
that the set is closed under process extensions. Note that the style of the next
definition is inspired by the definitions of concurrent bisimulations in [18].

Definition 10 (Tactic coverage).
Let ⋈ be an alignment of net systems S1 and S2. S2 covers the tactic of S1 with
respect to ⋈, denoted by S1 ⩿⋈ S2, iff there exists a set I ⊆ {(π1, π2)} such that:
(i) π1 is a process of S1 and π2 is a process of S2.
(ii) If π1

0
and π2

0
are the initial processes of S1 and S2, respectively, (π

1

0
, π2

0
) ∈ I.

(iii) If (π1, π2) ∈ I, then αdom⋈(π1) ⋈ αcod⋈(π2) holds.
(iv) For each (π1, π2) ∈ I holds that if π′

1
is an extension of π1 then there exists

(π′
1
, π′

2
) ∈ I where π′

2
is an extension of π2.

(v) For each (π1, π2) ∈ I holds that if π′
1
is an extension of π1 then for each π′

2

extension of π2 such that αdom⋈(π
′
1
) ⋈ αcod⋈(π

′
2
) holds (π′

1
, π′

2
) ∈ I.

We shall denote with I⋈ the set of process pairs used to decide S1 ⩿⋈ S2. If each
of two aligned net systems covers the tactic of the other one with respect to the
alignment, we refer to the systems as isotactic with respect to the alignment.

Definition 11 (Isotactic net systems).
Let ⋈ be an alignment of net systems S1 and S2. S1 and S2 have equal tactics, or
are isotactic, with respect to ⋈, denoted by S1 ≑⋈ S2, iff S1 ⩿⋈ S2 and S2 ⩿⋈−1 S1.

One can check that systems from Fig. 2 are isotactic with respect to the alignment
proposed in Fig. 1. In net systems which are isotactic with respect to an alignment
relation, it holds that for every process that one can observe in one net system
one can also observe a process in the other net system so that the set abstractions
of these processes with respect to the domain and the codomain of the alignment
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relation, respectively, are aligned (and vice versa). Intuitively, an alignment of
process set abstractions denotes the equivalence of the processes with respect
to complex events induced by the alignment and must be closed under process
extensions. Consequently, isotactics preserves the order of occurrence for groups
of transitions of net systems that are related by the alignment relation, as well as
concurrent enabling of transitions in these groups. To define these properties, we
need a relation to capture concurrent enabling of transitions in a net system (not
to be confused with the concurrency relation for causal nets). For a net system
S = (N,M), N = (P,T,F ), the transition concurrency relation of S, denoted
by ∣∣S , contains all pairs of transitions (t1, t2) ∈ T × T for which there exists a
marking M ′ ∈ [N,M⟩, such that ●t1 ⊎ ●t2 ⊆M

′.

Theorem 1. Let S1 = (N1,M1) and S2 = (N2,M2) be net systems and ⋈ be an
alignment of S1 and S2, s.t. S1 ⩿⋈ S2 holds. Let α▹, β▹ ∈ dom⋈ and let t1α ∈ α▹ and
t1β ∈ β▹ be transitions of N1 s.t. t1α ∉ β▹, t

1

β ∉ α▹, and for every γ▹ ∈ dom⋈∖{α▹, β▹}

holds {t1α, t
1

β} ∩ γ▹ = ∅. Then, the following properties hold:

(1) If there exists a firing sequence σ1 = t
1

1
. . . t1α . . . t1β in S1, then there exists a

firing sequence σ2 = t
2

1
. . . t2α . . . t2β in S2 s.t. there is α◃, β◃ ∈ cod⋈ for which

holds (α▹, α◃), (β▹, β◃) ∈ ⋈, t
2

α ∈ α◃, and t2β ∈ β◃.

(2) If t1α ∣∣S1
t1β, then there exist transitions t2α, t

2

β of N2 s.t. t2α ∣∣S2
t2β and there is

α◃, β◃ ∈ cod⋈ for which holds (α▹, α◃), (β▹, β◃) ∈ ⋈, t
2

α ∈ α◃, and t2β ∈ β◃.

Proof. Let π1 = (Nπ1
, ρ1), Nπ1

= (B1,E1,G1), be a process of S1 such that
e1α, e

1

β ∈ E1, where ρ1(e
1

α) = t
1

α and ρ1(e
1

β) = t
1

β , and: (1) ρ1 is a bijection between

events in E1 and transitions in σ1, (2) e
1

α ∣∣Nπ1
e1β . Since S1 ⩿⋈ S2, there is a process

π2 = (Nπ2
, ρ2), Nπ2

= (B2,E2,G2), of S2, such that αdom⋈(π1) ⋈ αcod⋈(π2) with
set abstractions αdom⋈(π1) = (H1,≺1, ξ1) and αcod⋈(π2) = (H2,≺2, ξ2). Moreover,
there exist tactics H1 and H2 of events in αdom⋈(π1) and αcod⋈(π2), respectively,
and a bijection χ ∶ H1 → H2 which respects alignment and causality, cf., Defi-
nition 9. Let h1

α, h
1

β ∈ H1 be such that e1α ∈ h
1

α and e1β ∈ h
1

β . Let h
2

α, h
2

β ∈ H2 be

such that χ(h1

α) = h
2

α and χ(h1

β) = h
2

β . Let e
2

α ∈ h
2

α and e2β ∈ h
2

β be events of H2.

It holds that h1

α ≠ h
1

β due to the fact that χ preserves alignment and there exists

no δ▹ ∈ dom⋈ that contains t1α and t1β , i.e., ∄ δ▹ ∈ dom⋈ ∶ {t
1

α, t
1

β} ⊆ δ▹.

(1) It holds that either e1α G+
1
e1β or e1α ∣∣Nπ1

e1β . Since h1

α ≠ h
1

β and χ preserves

causality, it holds that either e2α G+
2
e2β or e2α ∣∣Nπ2

e2β . Hence, there is a firing

sequence in S2 in which transition ρ2(e
2

α) fires before transition ρ2(e
2

β).

(2) Since h1

α ≠ h
1

β and χ preserves causality, it holds that e2α ∣∣Nπ2
e2β . Hence, it

holds that ρ2(e
2

α) ∣∣S2
ρ2(e

2

β). ◽

Based on Theorem 1, we say that isotactics is (1) order preserving and (2)
concurrency preserving. For instance, the order of t3 and t13 and the concurrency
of t2 and t3 from the system in Fig. 2(a) is preserved in the system in Fig. 2(b).

4 Abstraction

Abstraction can be seen as a special case of alignment if certain properties are
satisfied. Next, we elaborate on these properties and define abstraction using the
notion of tactic coverage. Again, we first reflect on the abstraction of conceptual
models in Section 4.1 before we turn the focus to behavioral models in Section 4.2.
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4.1 Abstraction of Conceptual Models

Abstraction is at the core of model creation, which comprises the mapping and
reducing the entities of a problem domain for a certain purpose [19]. Abstraction
is not limited to the process of creating a model for an (existing or non-existing)
real world entity, though. The abstracted original may be a model as well. Entities
of one model are then mapped to a more abstract model representing a reduced
representation of the former. Abstraction of a model, thus, yields a second model
that is aligned with the original model.

Abstraction of conceptual models relies on two elementary operations, aggrega-
tion and elimination. Aggregation refers to grouping entities that are semantically
related. They have a joint representation in the abstract model. As such, ag-
gregation leads to complex correspondences between the original model and
the abstract model. Elimination, in turn, refers to the act of omitting entities.
Certain entities of a model may be without counterpart in the abstract model.
Eliminated entities are not part of any correspondence between the original model
and the abstract model. Along these lines, abstraction of conceptual models is,
for instance, the basis of the superclass concept in object oriented modeling.

Against this background, one may decide whether two conceptual models are
related by abstraction based on an alignment between them. That is the case if
one model can be derived from the other model by eliminating all entities that
are not part of any correspondence and by aggregating the remaining entities
according to the correspondences of the alignment. Since information loss is the
desired outcome of abstraction, aggregation must not increase the number of
entities represented in the model.

Note that the notion of specialization can be seen as the reverse operation for
abstraction. Specialization relies on extension and refinement, the former being
the reverse of elimination, the latter being the reverse of aggregation.

4.2 Abstraction of Behavioral Models

As for conceptual models in general, abstraction of behavioral models relies on
the aggregation and elimination of model entities. In net systems, these entities
are interpreted as poset of events, i.e., process runs. Thus, the abstraction of
behavior is the abstraction of processes that may be eliminated or aggregated.

Consider two net systems and an alignment between them. To determine
whether both models are related by abstraction, we check whether all differences
in their processes are caused by elimination and aggregation from one system to
the other. Elimination of a process means that a process of one system must have
a corresponding process with the same tactic in the other system, but the reverse
is not required to hold. Further, the notion of aligned process set abstractions,
cf., Definition 9, enables us to consider the aggregation of processes. In fact,
the partitioning of process set abstractions allows the definition of different
aggregations. Since we require the existence of matching tactics, we actually
require the existence of some valid aggregation operation.

Definition 12 (Abstraction of net systems).
Let S1 and S2 be net systems. An alignment ⋈ of S1 and S2 is an abstraction
iff S1 ⩿⋈ S2 and the aggregation predicate agg⋈ holds. S1 is called an abstract
version of S2 with respect to abstraction ⋈.
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○ We refer to ⋈ as meta abstraction if agg⋈ holds when ∀(x, y) ∈ ⋈ ∶ ∣x∣ ≤ ∣y∣.
○ We refer to ⋈ as instance abstraction if agg⋈ holds when for every (π1, π2) ∈ I⋈
there exists an alignment χ between some tactics of process set abstractions
of π1 and π2 such that for all (x, y) ∈ χ holds ∣x∣ ≤ ∣y∣.

In Definition 12, elimination is captured by the concept of tactic coverage, i.e.,
an original net system describes all, and usually more, tactics than its abstract
version. We propose to parameterize the abstraction notion by using different
aggregation predicates. The role of an abstraction predicate is to define the
semantics of the aggregation operation. Intuitively, it must reflect the aggregation
of process related information. In this paper, we offer two aggregation predicates.
The meta abstraction relies on the aggregation of sets of aligned transitions in net
systems. In this case, one can argue that an original net system uses modeling
constructs of higher granularity than its abstract version [20]. Alternatively,
the instance abstraction ensures that set abstractions of processes taken from
the set of pairs used to decide on tactic coverage – the elimination feature of
abstraction – can be aligned in such a way that the aligned parts show the
decrease in behavioral information, i.e., the sizes of parts decrease in size. The
instance abstraction, therefore, ensures aggregation on the instance level. We
foresee that new aggregation predicates will evolve to complement the above two.

5 Application of Isotactics

This section elaborates on the application of isotactics. In particular, we focus on
existing techniques for implementing the abstraction of behavioral models with a
structural approach. These techniques implement transformations that are defined
structurally, but motivated by behavioral characteristics. It is often assumed that
abstraction operations should be order preserving, see [7,8]. However, there has
been a lack of a precise definition of what constitutes order preservation in a
general setting, i.e., without imposing any assumptions on the relation between
activities of the original model and its abstract version. Based on isotactics, we
provided such a definition, cf., Theorem 1. We see that common approaches to
structural abstraction respect the presented abstraction notion. However, we
also show that those structural approaches are limited in their expressiveness.
There exist behavioral models that show an order preserving abstraction based on
isotactics, but they cannot be derived from each other using the existing structural
techniques. For instance, the triconnected abstraction of behavioral models is
based on fragments obtained by applying the triconnected decomposition of a
graph derived from the model [8]. These fragments are single-entry-single-exit
(SESE) and form a containment hierarchy, which is leveraged for abstraction. In
an abstraction step, the smallest (in the number of edges) SESE fragment that
contains all irrelevant constructs (for the purpose of the model) gets replaced
with a fresh activity. The latter represents the whole SESE fragment of a given
detailed model in its abstract version.

The intuition behind the triconnected abstraction can be transferred to
net systems. For a net N = (P,T,F ), a SESE fragment is given as a subnet
N ′ = (P ′, T ′, F ′) with P ′ ⊆ P , T ′ ⊆ T , and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)). In
case of a special class of net systems, called WF-systems [21], one can efficiently



Isotactics for Alignment and Abstraction 13

compute all SESE subnets of a given WF-system by using the technique described
in [22]. Finally, a (triconnected) SESE abstraction step is realized by replacing a
SESE subnet of a net system with a single transition; note that we require that
no place of the subnet contains a token.

(a)

u v

v

u

u v

v

u

u v

tabs

u

tabs

tabs

v

tabs

(b)

u

v

tabs

SESE

u

v

Fig. 6. SESE abstraction of net systems

Fig. 6 explains the SESE abstrac-
tion. Fig. 6(a) shows the general idea.
Here, a SESE subnet of the original
net system with entry u and exit v

(top) gets replaced by transition tabs
in its abstract version (bottom). De-
pending on types of entry and exit
nodes, we distinguish four abstraction
operations, see Fig. 6(b). Every SESE
abstraction operation induces an align-
ment relation between the original and
the abstraction result; the set of tran-
sitions of the SESE fragment can be
put into a correspondence with the ab-
stract transition tabs , whereas all other transitions are related by elementary
correspondence with their copies in the resulting net system. Intuitively, the ob-
tained alignment reflects some behavioral relation between the systems. Formally,
this relation can be characterized using abstraction as introduced in Section 4.2.

Indeed, two net systems S1 and S2, where S1 is safe and live [23] and S2 is
obtained from S1 by means of a SESE abstraction operation, are in the meta
abstraction relation as well as in the instance abstraction relation. A formal
proof of this statement is beyond the scope of this paper. Nevertheless, one
can trivially conclude that for every process of the original net system which
contains events that represent transitions from the SESE subnet, there exists
a process in the abstract net system which contains an event which represents
an abstract transition tabs such that set abstractions of these processes can be
aligned. Safeness, liveness, as well as the absence of tokens at places of the SESE
subnets, are required to ensure that the occurrence of transitions in the subnet
has the same effect for the surrounding net as firing the abstract transition.

Besides the possibility to characterize the behavioral relation between net
systems derived from each other by structural transformations, isotactics also
makes the limitations of these techniques explicit. Consider two aligned models
in Fig. 7. Fig. 7(a) shows the original model, whereas Fig. 7(b) proposes its
abstract version. Both models show meta abstraction and instance abstraction.
Apparently, the model in Fig. 7(b) cannot be derived from the original by means
of SESE abstraction operations. The smallest SESE fragment which contains any
subset of at least two tasks of the model in Fig. 7(a) is the fragment with entry u

and exit v, which would imply the aggregation of the whole model into a single
task; note that at least two tasks are required to trigger a SESE abstraction
operation leading to a structural change in the abstract model. Nevertheless,
the model in Fig. 7(a) covers the tactic of the model in Fig. 7(b) and satisfies
aggregation predicates; both on the level of alignment of tasks and on the level
of aligned tactics employed to decide on tactic coverage.
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Fig. 7. Abstraction of BPMN diagrams: (a) original and (b) its abstract version

6 Related Work

Sequential equivalences have been classified in the linear-time branching-time
spectrum by the seminal work of van Glabbeek, for concrete behavioral models [24]
and for those with silent steps [25]. Bisimulation [26], which requires the ability of
two models to simulate each other, is commonly seen as the upper bound of this
spectrum. It was advocated that equivalences of this spectrum shall be applied
for comparing behavioral models in BPM [27]. Several of the aforementioned
equivalences can be lifted to non-sequential models as investigated in this paper.
Isotactics is particularly inspired by notions of concurrent bisimulation as defined
in [18]. A survey of equivalences for net systems under sequential and non-
sequential semantics can be found in [28]. All those equivalences have in common
that they assume models to be defined on the same level of granularity. As such,
they are applicable only if an alignment is functional and injective, i.e., built of
non-overlapping 1:1 correspondences. There have been only a few attempts to
lift equivalences to a more general setting. In [29], trace partitioning is proposed
to decide trace equivalence for non-overlapping complex n:m correspondences. A
similar idea was followed for the comparison of state transition systems under
non-overlapping complex correspondences between transitions [30]. We go beyond
these results by grounding isotactics on concurrency semantics, thus preserving
the level of concurrency. Also, our notion is more generic than those presented
in [29,30], since it is applicable for overlapping correspondences.

The question of how to cope with elements of behavioral models that are
not part of any correspondence has been addressed by behavior inheritance [31].
It proposes to rely on hiding (assign a silent label to transitions) and blocking
(remove transitions) before bisimulation is assessed. This way, many use cases
for the comparison of business process models can be addressed by verifying
standard equivalences, cf., [2]. This work is orthogonal to the question of complex
correspondences. Hiding and blocking may be applied before isotactics is verified.

Behavioral abstraction and refinement techniques typically aim at preserv-
ing behavioral properties, but are defined on the structural level. Behavioral
abstraction was approached, e.g., with predefined patterns [32] and structural
decomposition [8]. There also exist different sets of reduction rules for Petri
nets [33,34]. For the reverse operation, different refinement operators have been
proposed [35]. Such refinements replace a transition or place with a subnet that
is embedded into the original net [23]. The notion of isotactics is not limited to
hierarchical abstraction and refinement as implemented by structural techniques.
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It makes the limitations of structural transformations explicit and opens the
space for transformations that are directly grounded in the behavior.

7 Conclusion

We proposed the notion of isotactics – an equivalence relation for behavioral
models that are based on concurrency semantics and for which an alignment
relation has been defined. With respect to existing equivalence notions, isotactics
stands out for two reasons: First, it does not impose any assumptions on the
alignment relation. Second, it preserves the level of concurrency of aligned
transitions, whereas existing work focuses on sequential semantics.

Given its broad applicability, isotactics can be used to solve a variety of
issues in BPM. For instance, when a technical process model is changed, one can
determine whether the modified model is still isotactic to a respective business-
level model. If this is not the case, changes may be implemented accordingly. In
many cases, however, both models will still be isotactic, so that no modifications
will be required. In this way, isotactics can support consistent model evolution
and improve the quality of the process landscape. The proposed characterization
of abstraction defines a space for novel abstraction techniques. We showed that
structural transformations for behavioral abstraction are limited. The notion of
isotactics-based abstraction, thus, provides the foundation for techniques that
are directly grounded in the behavior.

Isotactics, as proposed in this work, is the first step toward a spectrum of
equivalences. Exploring this spectrum, e.g., by taking the branching structure
into account, along with results on the computational complexity of deciding
isotactics, are further directions for future work.
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